Extra material: Bitwise operations

Bitwise operations are operations that are executed for each bit (i.e. bit-by-bit). We have: logical bitwise operations, bit shift operations and rotate operations.

Bitwise logical operations

We consider that a bit with the value 1 represents a logical value of TRUE and a bit with the value 0 represents the logical value FALSE. Having established these conventions, we can describe the well-known logic tables for the logical operations: AND, OR, XOR and NOT.

	AND
	0
	1

	0
	0
	0

	1
	0
	1

	OR
	0
	1

	0
	0
	1

	1
	1
	1

	XOR
	0
	1

	0
	0
	1

	1
	1
	0

	NOT
	

	0
	1

	1
	0

The IA-32 assembly instructions that perform these logical bitwise operations are detailed below:

and operand1, operand2
[bookmark: _GoBack]or operand1, operand2
xor operand1, operand2
not operand1

where operand1 and operand2 are either registers, memory references (i.e. variables) or constants (operand1 can not be a constant!) both of the same size/type: byte, word, doubleword.
Each single bit of operand2 is and/or/xor with each corresponding bit from operand1. The not operation is a unary operation, so the bits of operand1 are modified directly.

Examples:
Let the AL register be 1111 0000b. For each instruction below, AL is considered to have the initial value 1111 0000b.
and al, 0011 1100b		=> AL:=0011 0000b
or al, 0011 1100b		=> AL:=1111 1100b
xor al, 1010 1010b		=> AL:=0101 1010b
not al				=> AL:=0000 1111b

Shift and rotate operations

shl a, n		: (Shift Logic Left) moves the bits of a with n positions to the left; n bits from
 the left side are lost and n zero bits are added to the right side
shr a, n	: (Shift Logic Right) moves the bits of a with n positions to the right; n bits from
 right side are lost and n zero bits are added to the right side
sal a, n		: (Shift Arithmetic Left) identical to shl
sar a, n	: (Shift Arithmetic Right) similar to shr, but the sign bit of a (not zeroes) is added
		 on the left side n times
In the above shift instructions, a can be a register or a memory reference (i.e. variable) on a byte, word or doubleword and n can be the register CL or a constant (smaller than 31).

Rotate operations are just like shifts, but the bit that exits the bit configuration on one side enters the bit configuration on the other side (it is not lost like in the case of shifts!).

rol a, n		: (Rotate Left) rotate the bits of a with n positions to the left
ror a, n	: (Rotate Left) rotate the bits of a with n positions to the right
rcl a, n		: (Rotate with Carry Flag to the Left) rotate the bits obtained from concatenating
		 CF and the bits of a with n positions to the left
rcr a, n		: (Rotate with Carry Flag to the Right) rotate the bits obtained from concatenating
		 the bits of a and CF with n positions to the right.

In the above rotate instructions, a can be a register or a memory reference (i.e. variable) on a byte, word or doubleword and n can be the register CL or a constant (smaller than 31).

Examples:
Let the AL register be 1111 0000b. Before each instruction below, AL is considered to have the initial value 1111 0000b.
shl al, 1		=> AL:=1110 0000b
shr al, 2		=> AL:=0011 1100b
sal al, 1		=> AL:=1110 0000b
sar al, 2		=> AL:=1111 1100b
rol al, 1		=> AL:=1110 0001b
ror al, 1		=> AL:=0111 1000b

Observation: After every instruction from above, the last bit that exists the bit configuration is always stored in CF also. For example if 1000 0000b is rotated with 1 position to the left the result will be 0000 0001b and CF=1.

Observation: No matter what the value x is (either 0 or 1), we have the following rules:
	x OR 0 = x

	x OR 1 = 1

	x AND 0 = 0

	x AND 1 = x

Ex.1. Being given a byte A, construct a new byte B in the following way:
· bits 0-2 of B should be equal to bits 0-2 of A
· bits 3-4 of B should be set to 1
· bits 5-7 of B should be equal to bits 2-4 of A

bits 32
global start
extern exit
import exit msvcrt.dll

segment data use32 class=data
 a db 11110101b
 b db 0

segment code use32 class=code
start:
 ; bits 0-2 of B should be equal to bits 0-2 of A
 mov al, [a] ; AL:=1111 0101b
 and al, 0000 0111b ; AL:=0000 0101b (we isolate bits 0-2 of AL
; we leave the bits 0-2 of AL unchanged and set the
; other bits to zero
 or [b], al ; b:=0000 0101b

 ; bits 3-4 of B should be set to 1
 or byte [b], 0001 1000b ; we set the bits 3 and 4 of B to one and
 ; leave the other bits unchanged
 ; b:=0001 1101b

 ; bits 5-7 of B should be equal to bits 2-4 of A
 mov al, [a] ; AL:=1111 0101b
 shl al, 3 ; shift with 3 position to the left so that bits 2-4
; arrive on positions 5-7
 and al, 1110 0000b ; AL:=1110 0000b (we isolate bits 5-7 of AL
; we leave the bits 5-7 of AL unchanged and set the
; other bits to zero
 or [b], al ; b:=1111 1101b

 push dword 0
 call [exit]

